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LOGARITHMIC DERIVATIVES OF TWO NORMALIZING FUNCTIONS

Geoffrey S. Watson
Princeton University

• ABSTRACT

If the unit vector x in Mq has a probability density proportional

to exp K PX Ax , or exp K(UX) 2 , then the satistical theory for x depends

largely upon the logarithmic derivatives Aq (K) and Bq (K) of

1 e'ct(1-t 2)Vdt and -1 et2(t2)vdt

-1 -1

where v-(q-3)/2 . This paper gives a self-contained study of the functions

A q(K) , Bq (K) , of the computational problems of calculating these functions, of

solving y=A (K) and y=Bq(K) , and of finding the variance stabilizing trans-

formations fKA'(K)dk , fB'(K)"dk are also discussed.

Key words: Fisher-von Mises distribution, Scheidegger-Watson distribution,
- power series, asymptotic expansions, variance stabilizing

transformations, Bessel functions, Kummer functions, Riccati equation.
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1. INTRODUCTION

aeTwo probability densities on the surface Qqof the unit ball in IRq

aegiven by

fi(x) - a*(KcY1 eXP K 1.1

f2(x) *q epci') 12

when U'*x is the scalar product of the two unit vectors x and Uz U is

called the modal direction and K a concentration parameter. In (1.1) K;00

In (1.2), Kc my be any real number. If Kc.O either density becomes uniform.

The statistical theory of (1.1), the Fisher-von Mises distribution, has

been studied most recently by Watson (1981a, 1981b). The statistical theory of

(1.2), the Scheidegger-Watson distribution, has been studied for general q in

Watson (1981c). It is found that the theory turns upon

A (Kc) *a*I(K)/a*(K) ,(1.3)q q q

B (K)i b*()/b*(c) ( 1.4)q q q

respectively. The integral definitions of a* and b* can be simplified byq q
writing x - tji + (1-t 2) where t a Uj*x *and is a unit vector orthogonal

to ii.Then, writing

wq w area of a q .2,/2/r(q/2) ,(1.5)

* we have

a*(Ic) a (oq.. 1aq(K) 9 b*(ec) a wq- bq(KC)
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where

*Iq(K) $eft( 1 .t
2 ) 3)/2 d , (1.6)"

-1

-1
bq (i) 0 1 *ct 2 (1-t2)(q3)/2dt (1.7)

and

Aq(K) -a'(K )/aq(K) 0 B (K) - ()/bq()1.8)

The distribution (1.1) originated in Statistical Physics with Langevin's

work on magnetism. (Our nomenclature refers only to the first u;es of (1.1) for

statistical inference.) Dyson, Lieb and Simon (1978) In proving the existence

of spontaneous magnetization at sufficiently low temperatures needed some properties

of log aq(K) . Suppose h(y) is defined by

h(y) a log r exp y*x du(x)

Pq

* where ,(x) is any measure on a0q . Then h(y) is a convex function of y

If c is the largest eigen value of [a2h/ayjay 3 , - cy'y + h(y) is concave

in y. If ji is the uniform measure on Pq , c-q 1 , a proof of which is given

below. Their first result is basic for Laplace transforms -- see e.g. Barndorff-

Nielsen (1978).

* Schou (1978) gave some properties of and expansions for Aq(iC) by

recognizing that aq (K) is proportional 1(q/2)-1 , (K)K- (q/2)4  and using the

properties of the modified Bessel function of the first kind, I (K) . Watson

(1956) gave some results on Bq (K) , qw3
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We will derive all the properties of A (ic) (Section 2) and Bq() .
qq

(Section 3) directly, rather than as the ratios al/a , bl/b . More properties

and more teMs in the expansions will be given than heretofore. Furthermore

in practice one needs to be able to compute, any q and K , A (c) , B (c)q q
solve the equations y a Aq (K) , y a Bq(K) and to apply the variance stabilizing

transformations (derived in Watson 1981a, 1981b) q (K) " f A'(K)'%dk

h (c) - f B' (ic)"k numerically. These matters are discussed in Section 4.
While we have wished to emphasize that it is A q and 8Sq rather than

aq and bq which matter, we have for completeness included all known properties

of the functions aq and bq . The former is associated with the modified

Bessel function of the first kind !V(z) and the latter to the less well known

Kummer function of the first kind (a,b,z)

-

II
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2. The functions a (K) *A,(K) and its inverse.

Consider the functions Of K;~00

aq(K) e ~*t(1 ... 2 ( 3)/2dt q~o2 *(2.1)

AbK)- .;i)aqK (2.2)

For the applications now envisaged q is integer ;02 but the following results

are true for real q~o2

It is clear that if q,>2, Oca (ia(K) .aq (o It is simpler to work

with

YV(K) - aq(K) ,v a (q-3)/2;"-lI (2.3)

M1, (e) - Y (K)/YV(K) - Aq(K) (2.4)

Examination of

*0 a et(1-t 2)vdt

shows that

whence

0'(Aq(K) a "VOIC( (2.6)

Elementary manipulations show that

Y;Y * (V >-I) *(2.7)
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KY* -(2v+1)%y + 2v - * (v >0) , (2.8)

-gy;'+ 2(v+l)y- Ky V a 0, (v;-1) . (2.9)

It my be verified that (2.9) has a solution proportional to Iv44(P) -(ic)

whence

aq(K) _ (2w)q/2 Iq/2-1(K) K-q/2+1 (2.10)

Here I (K) is the modified Bessel function of the first kind as defined in

* Watson (1952). Thus as K-0

a (K) I (2w)q/2 Kq/2-1 ( /2 )q/-1+2r (2.11)
qY-0 r.: (q/2-l+r)

while as i-.. ,

a q(K) S (2)q/2-1 (q-3)/2 eo(1 + o(K-1)) (2.12)

Since

%(K) aq"/aq - (a;/aq)2 9 (2.13)

aq < aq
q q

It follows that

A(K) + A2(10 < 1 . (2.14)

Using the Cauchy Inequality, a"a q)(a*)2 , in (2.13) and the result of Dyson,

q q q
Lieb and Simon (1978), we have

04A%(K)Q /q (2.15)



Returning the probabilistic background, t-oW*x where x has the

distribution (1) so that

A q(,c) a Et ,(2.16)I q *- Et 2 
-(Et) 

2 *var t ,(2.17)

so that (2.6) and (2.15) are statistically obvious. For A'(gc) -var t will be aq
mnaximumn when K-0 because of (2.18) below. It is then equal to i/q by a direct

easy calculation. Further since

aolao a' 3
A"K 3 q Q9~9 + 2(j9q)q aq a2 aq

a Et? 3 3 Et2ft + 2(Et )3

a E(t-Et) 3

so fran the evident skewness of the distribution of t for c>0 it follows that

A-*,() 'C 0 .(.8q

Thus the function A (K) Is non-decreasing and convex on (0,a.) taking itsq
minimum At Kw0 and miaxinum as Kc- in the range EO,13 While we will not

went Aq(ic) for negative sc 9 It is helpful to observe that Aq(K) Is an odd

function of sc . It is easy to show that A ,A'A" ... are the successive

cuulants of tsp'x .a fact which is used in Watson (198ld) to derive Edgeworth

expansions for certain limiting distributions.

Integrating a"' by parts and using (2.3), we find that A (ic) satisfiesq q
the Riccati equation

9P
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1',c * - A 2(Kc) -JA (i) ,(2.19)q;K q K q

as found via bessel functions by Schou (1978). Similar mnanipulations show that

A() A -2 , (q)P3) *(2.20)

q Aq-2 (K) K

as in Schou (1978)(A1). By (2.6), (2.15), and (2.8) it follows that

A *- 0 * A (-) - 1 (2.21)

Inspection of A (K) as K-1O shows A (0) a 0 s0

A;(-) -. A (0) - 0 (2.22)qq q

We now give more detailed expansions for A tK) as K-0O and iK-om  by solving
q

(2.19). The difference equation will be used later to suggest how to tabulate

Aq (K) for various values of q

For q-3 , there is a simple explicit formula

A3 (K) a coth K -1 (2.23)

For q=2 ,we my write

A2(ic) 0 11(K)/10(c) (2 ..24)

since, generally

Aq (K) -* /+ K /q21K (2.24)

For qm2 9 the zeros of %0 nearest to the origin are at *t2.41i (approx.). For

qw3 , the zeros of 1/2 nearest to the origin are at :0.811 (approx.). These
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cOMMOts help to define the radius of convergence of the series expansion (2.25)

below.

For- .O , we may substitute alK + a3K3 + aS5 .... for the (odd)

function A q(c) in (2.19). We then find that

A "'K I c3 1 2 1C5 + 7W (.5
Aq(.() q . , 3 .. Z .s..0.7 ;.s

qq(q+2) q3(q+2)(q+4)

where the first two terms agree with Schou (1978).

For mico- , we may substitute a series in powers of K-1 in (2.19) and

find that

Aq.(- 1. 1+ (q-l)(q-3) 1

(ql)( + 0(-) (2.26)

IC K

where the first three terms agree with Schou (1978). For q-3 the terms in K-2

and K*3  are zero. But from (2.23), we may write

A3(K) - (1 1 K+1 e'2 1 (2.27)

~1
so we see that A3 (c) - 1 + . is exponentially small.

From the form of (1) it is obvious that maximum likelihood leads to

equations for Kc of the form y - A(oc) so that we need Kc a A l(y) for all
q

y In E0,13 . The equation (2.19) can be rewritten

2 d(1-y2)K - (q-l)y) W mc (2.28)

Since the inverse function will also be odd we may put ict aly + a3y 3 +...

in (2.28) for y small. We find then, as y*O



q y +y + y+0(y)

Alternatively we could revert the series (2.25) to find (2.29). To find IC when

y is near unity we may revert (2.26) using z - 1-y - 1-A ('c) or set z a 1-y

in (2.19) and solve for a series in inverse powers of z . Either way we find

*that the solution of y - A q(KC) for y near unity is defined by

1 -2 Y + a3 I-)2 + -3gj (1-y) 3 + O(1-y) 4) (2.30)

The case qm3 is again special but (2.27) yields

z ou(1-y) + 2e

so

1 '-(l-y) + 2 exp - (1-y) . (2.31)
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3. The functions b_(K) , B.() and its inverse.

Here we consider the functions

1 2bq (K) - z,(K) ft- e~t2(1-t2)'Odt ,(3.1)

-1

Bq(K) a %(K) a b'/b a zV/z . (3.2)qq q

where v-(q-3)/2)- and --<K<-.

The functions zV (K) , bq (K) and their successive derivatives form

descending sequences because ItI (1 . rurther

0<bq, <bq2  if ql > q2

04zl< zv2 if 1 > q2

Thus

0 4 NV(K) - Bq (K) < 1 (3.3)

Elementary calculations show that

Z;- zV - zv+1  , (v)-) , (3.4)

2K z; 2v z. -(2v+)z, 1v;o) , (3.5)

2K z" + (2v+3 - c)z - z -0,(v - ) (3.6)

In this case we will proceed without identifying and further describing the

function zv(K) - bq(K) . Details are given in the Appendix.v
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From Cauchy's inequality and
Y2

B,()-b,*/b - 2*/ (3.7)
S q q /bq)

b"(x) < bq(K)

qq

it follows that

0 - BI(K) - I - B2(K) (3.8)

2If the random vector x has the distribution (2) and u - (U'x) ,

then IEu;)Eu2 >.... ;) 0 and

Bq(K) a Eu , (3.9)

Bqic) a Eu2 (Eu)2 a vat u (3.10)

B"(iK) a Eu3 - Eu2Eu - 2Eu(Eu2-(Eu)2) - E(u-Eu)3  (3.11)

From the skewness of the distribution of u it follows that

Bq'(K) •0 0 (C<0) Bq(ic) < 0 (K )0) (3.12)
qq

Thus B.(K) is non-decreasing and concave on (-,0) , convex on (0,.) , taking

its minimum at -a and its maximum at +- in the range 10,13

If we put ,0 in (3.4), and in (3.5) with +1 instead of v , we find

that

Bq(0) - /q .(3.13)

]q
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f; Then (3.4) shows that

. (0) " 2/q(q+2) .(3.14)-

From (3.4) and (3.5) we find the recurrence relation

Bq(K)(1-Bq..(K)) - + -Bq2(K) (3.15)

Now B (K) and B (K) tend to limits (the same from (3.4)) in [1 13 asq q-2(K c,-** which (3.15) shows to be

Bq(-) 1 1 (3.16)

Similarly B q(K) lies in EO * for K40 and

Bq(-) - 0 (3.17)

Finally we note that B (K) satisfies the Riccati equation

1 - 2K Bi(K) - 2K B2(K) a (q-2K)B q(K) (3.18)
q q

which holds for q'2 .

To find expansions for Bq (K) as IC-0 , K -4  , and K*- , we may

here use either the difference equation (3.15) or the differential equation (3.18).

He know of no explicit forms for special values of q but we will discuss the

cases q-2 and q-3 separately. After harder calculations than the last

section we find:

for K *0

(K) •l+ Ma-1) I+ 4-t)N-21L K2 + { -(a-1)
q( q q Z(q2) q (q+2)(q+4) q4(q+2)tq.6)

+ B(2)(- 4-2) K+ (3+ q4(q+2)(q+4)(q+G ) } +0( 4 ) ,3.)
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for Ks. 4 m

8(i) + -(A), (3.20).--
IC

for K -

(9CU -1 1 N-) I - 3(4) 1+0 (3.21)

Finally we need expansions for the solution of KB q(y) for y near

zero, near 1/q and near unity. We may revert the appropriate expansions above

or rewrite (3.18) as

2 dic
{1-2Ky + (2K - q)y} y a2& (3.22)

For a solution when y is near q-1 , the needs to be changed to

z-yq-1 . We find

m2 1 (q-2(q+21( 2 1,2 1)3) 3.23)' qz )(y" - "t2q+) ") + o(y- (.3

As y.1 , c-.. and we have

1 L (1-y) 2 (1-y)2

4-qtlJ (1_y)3 + 0((1.y)4) (3.24)

(q-2)

As y 0 ,sc- and we find

I I
12 (a-3)(12-19 3 4 3.5

K4

The formulas (3.21), (3.26) are unhelpful when qm3

Ii. . . . . l
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For q-2 * the density (2) is proportional to exp K cos2e and has

normali 2ng constant f exp i os28 dO when K >0 , the modes are at -0,w
while if K<b , they are at w/2 , 3w/2 . Thus there is no need to use

ic<0 -- a rotation of v/2 will serve. Further since cos2e- I(cosze+1)

#-2e has the density (1) with a concentration of K/2 . Thus

S- j(1 + A2() (3.26)

It is easily verified that this relation is consistent with A2  satisfying

(2.19) and 82 satisfying (3.18), etc.. Thus we may check (3.19) against

(2.25) and (3.20) against (2.26). In so doing we find that

2() 1 3 + 0(K5 ) (3.27)

3Our sc term in (3.19) was so complicated that we hesitated to give it, but

this device provides a check of it.

For q-3,

1 2t 2  1 2

B3(e) t dt f et dt
-1 -1

If K*- ,set c- , X-l . Then setting u - (2A)'It

2X B(-X)-l 2(2A)"e'' { 1 - 2e- (3.28)" (2A) ;

by noting the relation to the Gaussian and the fact that

- x e 2 dz e-2/2 x-

Thus (3.28) explains (3.21) I.e. 63(K) + (2K) "1  is exponentially small as sc- .

Similarly as n.-. , K-1 + 2y (see (3.25)) Is exponentially small.
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4. The computation of A;(od * B.() and associated functions.

From (2.10) it follows that

A q() - Iq/2W / lq12.1(1 . (4.1)

Since these modified Bessel functions are tabulated (see e.g. Abramowitz and

Stegun (1964)), A (K) may be found for any q and s . To solve y-A (K) we
q

my use Newton's method since (2.19) ,

%00 I A (oc - A A(K)(4.2)

and (4.1) enable us to compute the derivative. Thus hand calculations are not

a problem for Aq(K) .

To produce tables of the Aq (K) , machine calculations are needed. If

q is odd, we may first compute

A3(K) - coth K - K-1 (4.3)

and then use the recurrence relation (2.20) so that

AS(K) - (A 31) ) -  . 3K-1 , etc..

If q is odd, we need separate algorithms for A2(K) and A4(K) before 12.20)

my be used.

To compute A2(K) and A46) one may return to the basic definition

and use numerical integration to evaluate aq(c) , a (K) for smaller values of
q q

ic until the asymptotic expansion (2.26) comes in to force and the ratio becomes

awkward to handle. The latter will not happen if aq(K) and al() are dividedq q
by the first term of their asymptotic expansions. From (2.10) and the expansion

(Watson (1952)) oF IvCc) , K- . we have
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aq( ) ' (2/w)q/2 ! ea (4.4)

The derivative of (4.4) will be used for a*(K)

qqIf Aq(K) is to be tabulated for a specific q it may be best to

integrate the differential equation (4.2) numerically. To start the solution at

K,0 * set

A (K) - i/q + Ka K) (4.5)
q

so that a(K) satisfies

-- q'- o- - - - K2 (4.6)

q q

which is well behaved at the origin. Of course a(O)-O . When 1 becomes large,

(4.2) should be used directly.

In Watson (1981a) it is shown that the variance stabilizing transformation

for c-estimates is

g(K) a f (A'(k))' dk . (4.7)

in which the lower terminal is arbitrary. For q-3 we have found it convenient

to start at unity. The table of g(K) is then found by numerical integration

using (4.2) and (4.3); it is more accurate for values of c>l than for <1

Since 'S 1 are rare for q=3 in the applications we have met, this is very

satisfactory. If one regularly dealt with quite large Is as in palaeomagnetism,

it would be satisfactory to tabulate (4.7) by numerical Integration with A"(K)

replaced by the derivative of the asymptotic expansion (2.25) and starting at

1 a 10 or 20
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Turning now to the computation of Bq (K) , its shown in the Appendix

that
°&

q ( 3/Z,(qL)/2, (4.8)

where M(a,b,z) is one of the Kwmier functions. The tabulation most useful for

our purposes is that in Rushton and Lang (1954). It gives both the numerator

and denominator of (4.8) for q-1 (1) 5 , ic - 0.02 (.02)-1(.1)1()10(10)50,100,200.

These tables may be extended to negative i by using Kumer's transformation (A7).

The only known case where (4.8) reduces to iore familiar functions is

q-3 , K<<O . By specializing (4.8) or a direct calculation,

b3 (K) - K'i/ K u u"1 du (K >0) (4.9)
0

and, setting for K<0 , -K *X

b3 (K) - x-" r e"u u"16 du (K 0) (4.10)
0

Thus when K<0 , b3 1K) and b3(c) can be found using tables of the incomplete

puma-function.

To compute Bq() for specific q03 and K , or to make tables, it

seems that the best method is always to integrate the differential equation (3.18).

It my be rewritten as

S~(K U B(c)t 1) (K) (.1

To start the solution it is essential to use (3.19) since (4.11) is badly behaved

for se1l K.



To solve y Bqc) *when none of the expansions (3.19), (3.20) and

(3.21) my be used, one must compute 8 and 9K)from (4.11).

To find the variance stabilizing transformation

h(ic) , f B()I dk (4.12)q

the range of integration should avoid kinG if possible.
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APPENDIX

It was shown in Section 3 that b (60 satisfied the differential equationq
(3.6), or

ic b"ti) + o~ c) Vioc) b K (A.1)

This is Kumner's differential equation -- see e.g. Chapter 13 by L.J. Slater in

Abramowitz and Stegun (1964). It is seif-adjoint and a confluent form of the

hypergeometric equation with a regular singularity at ic-0 and an irregular

singularity at Ko . All regular solutions at the origin of

zwa" + (b-z)w" - aw = 0 (A.2)

are proportional to

(a) rzr
M(a,b,z) - rO E r7 (A.3)

where

(a)r, a(a41) ... (a~r-1)

Since

b (1c) *r Olt It(q3/2
q -1e (1 2)3) 2 d

the results of Section 1 show that

bq(0) *.q/wq...1
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Thus

. .,b.q(5)- -rLq/2 N iA)

we have already seen a reflection of some of the many recurrence relations

satisfied by (ab,z) but not the useful differential property,

dn N(a,b,z) m N(a+n . b+n , z) (A.6)

or the Kumer transformations

N(a,b,z) a • z N(b-a . b , -z) (A.7)

M(1+a-b , 2-b , z) e • z M1-a , 2-b , -z) (A.8)

The Kumuer function M is related to the Bessel function I, which arose in

Section 2 by the formula

M(a,bz) r ez/ 2 r(b-a-h)(z/4)an'b +

- (2b-2a-1) ,(b-2a) r(1)r
rO r: (b)r ba r (z/2) (A.9)

For Izj large.

i(aabz -titya R- (a)r(l1+a-b)r rZ~b '-'H. r: (_z)'r + °(IZl'R )I

ez_ a- S-1 (b;'.) (I-O)s _
S .. b a z' + °(IzS)) (A.1O)

s*aO

dilerel the upper sign t$ taken if -wr/Z arqzc< w/2 , the lowr otherwise.
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From (A.5) and (A.6), it follows that

%(C)- b(K) / bq(1c)

* ,Ilo g M , q/2 , K)

M(3/2,tct+21/2,K)
•m(1/2 , q/2 , K) (.1

From (A.11) and (A.7), we see that

S(-1)2(Q+2)/2)A.12)
Bq-) - (lq-l)/Z,q/2,K) L.2

and (A.11) and (A.8) give yet another form for Bq (-K) . (A.5) and (A.9) show

that

bq(K) - r((q-1l/2lr((q-2)/2)rq2 e!/2 L)1

UP (q-2)r((q-2)/2) r(_,)r
x E r: (q/21r 1q/2+r (K12) (A.13)

(A.5) and (A.Alr show that, as K-,4 ,

bq(K) OK K lq1/)e -1q-l)/2

S-1 (lq-ll/2)$11/2)$ S{-i S! K'S + O(c'S) (A.14)

swO

Iltet ,
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bqlK (q1/)-i)

R-1 r's (-(q-1)/2)r - -R
~r~o r r(-Kc) + O(gc) (A.15)

The expansions (A.13), (A.14), and (A.15) could be used directly to obtain

the related expansions for B (Kc) . However the procedure used in Section 3 isq
now seen to be much simpler e.g. it does not require this Appendix.
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